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Abstract

We propose a new solution concept for games in extensive form that incorporates both cooperation and 
subgame perfection. From its definition and properties, the new solution concept, named the subgame-
perfect core, is a refinement of the core of an extensive game in the same sense as the set of subgame-perfect 
Nash equilibria is a refinement of the set of Nash equilibria. To further characterize the subgame-perfect 
core, we show that each subgame-perfect core payoff vector can be implemented as a non-cooperative 
solution, as it is a subgame-perfect Nash equilibrium payoff vector of an extensive form game that is closely 
related to the original game. We also motivate and introduce a related concept of subgame-perfect strong 
Nash equilibrium of an extensive game that is coalition proof.
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1. Introduction

We propose and characterize a new solution concept, the subgame-perfect core of an extensive 
form game with transferable utility.

Arguably, the most well-known approach to defining the core of a non-cooperative game is 
given in Aumann (1959), which addresses strategic games.1 Aumann proposes two ways2 to 
derive a worth function for coalitions in a strategic game.3 With a worth function in place, he 
defines the core of the strategic game as the core of the derived coalitional game. In contrast to 
Aumann, we address extensive form games. Deriving a worth function from an extensive form 
game creates new challenges: the payoff that a coalition can achieve, as will be seen, may change 
as the game unfolds along a history generated by a strategy profile; each decision node determines 
a subgame and the payoff that a coalition can achieve may not be the same in all subgames.

As we will show, the subgame-perfect core is a refinement of the core of an extensive game 
in the same sense as the subgame-perfect Nash equilibrium is a refinement of Nash equilibrium. 
Thus, the subgame-perfect core is a cooperative analog of the non-cooperative subgame-perfect 
Nash equilibrium.

A coalition in a subgame can consist only of players who are active in the subgame, that is, 
players who still have decisions to make in the subgame.4 Additionally, coalition members can 
coordinate only on those actions that are yet to be taken by them in the subgame. Thus, in any 
subgame, the past is finished and previous actions taken by the players or coalitions cannot be 
changed – bygones are bygones. Moreover, when a coalition forms, an induced game is created in 
which members of the coalition act as one single player and the remaining players act as single-
ton coalitions. The sequential rationality of subgame perfection dictates that each coalition must 
act rationally in each subgame. Thus, the subgame-perfect core takes into account interactions 
of coalitions in a fashion that is analogous to how Nash and subgame-perfect Nash equilibrium 
(SPNE) take into account interactions of individual players. More precisely, as utilities are as-
sumed to be transferable, a payoff vector belongs to the subgame-perfect core of an extensive 
game if

• (a) there is a history that leads to a terminal node for which the payoff vector is feasible
• (b) no coalition of active players can improve upon its part of the payoff vector by deviating at 

any decision node along the history, where the payoff that a (deviating) coalition can achieve 
at any decision node in the history is equal to the highest SPNE payoff of the coalition in the 
induced game with origin at the decision node.

The motivation for part (b) of the definition comes from the fact, as illustrated by an example 
below, that the highest SPNE payoff that a coalition can achieve, may vary and be higher (or 
lower) as the game unfolds along a history.

To further characterize the subgame-perfect core, we show that each subgame-perfect core 
payoff vector can be implemented as a non-cooperative solution in that each subgame-perfect 

1 Also known as “normal form games”.
2 The so-called α and β approaches.
3 Recall that a “worth function” assigns a total payoff to each coalition: the sum of the payoffs to individual members 

of the coalition.
4 Since player set of the original game only includes players who have decisions to make in the game, we treat a 

subgame analogously by including only those players who have decisions to make in the subgame.
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core payoff vector is a SPNE payoff vector of an extensive game obtained by modifying the 
distribution of payoffs at certain terminal nodes of the original game. One interpretation of this 
result is that if maximizing social welfare requires the players to cooperate and coordinate their 
actions, then they can be incentivized to do so.

The paper also opens the way to further research. We note in particular that on the way to 
proving our main results we drive a coalitional game from an extensive game. Given the coali-
tional game, other cooperative game-theoretic solutions can be applied to the extensive game, 
such as the Shapley value, which exists and which assigns to each player a payoff that is equal 
to her expected marginal contribution to coalitions that include her and is thus viewed as fair. 
Investigation of such issues, however, is beyond the scope of this paper.

Apart from its theoretical interest, the motivation for the subgame-perfect core comes from the 
fact that there are many real-world situations in which players may cooperate to obtain higher 
payoffs compared to their payoffs in a SPNE of the game in the absence of cooperation. One 
such case is that of climate change formulated as a dynamic game (Chander, 2017). Nearly 
two hundred countries have signed a forward-looking cooperative agreement on climate change, 
known as the Paris Agreement. Since the countries are sovereign, no country can be forced to 
sign an agreement against her wishes. Thus, an agreement must make each country better-off 
compared to the status quo, i.e. the SPNE of the game, and no country or group of countries (such 
as developing or developed countries) should have incentive to withdraw from the agreement at 
any date. As will be shown, the subgame-perfect core payoff vectors in a general extensive game 
have these properties.

1.1. Relationships to other solution concepts

As a byproduct of the conceptual framework developed in this paper for defining the subgame-
perfect core, we propose a related concept of subgame-perfect strong Nash equilibrium (SPSNE) 
for an extensive game.5 To justify the SPSNE as a convincing extension of the familiar strong 
Nash equilibrium for strategic games (Aumann, 1959), we show that every SPSNE, just as in 
strategic games, is also a subgame-perfect coalition-proof Nash equilibrium (Bernheim et al., 
1987). As an application of the SPSNE, we show that in the two-player infinite bargaining game 
of alternating offers (Rubinstein, 1982), the unique SPNE is actually a SPSNE and the subgame-
perfect core consists of the unique SPNE/SPSNE payoff vector. Furthermore, if the players are 
patient, not only there is equivalence between the subgame-perfect core and the SPNE/SPSNE 
payoff vector but also between the subgame-perfect core and the Nash bargaining solution, be-
cause, if the players are patient, then, as Binmore et al. (1986) show, the unique SPNE payoff 
vector is equivalent to the Nash bargaining solution.

Our work introduces a new approach to the melding of coalitional game theoretic solutions 
with Nash equilibrium, the so-called “Nash Program”. Numerous papers have contributed to this 
program including Perry and Reny (1994), Pérez-Castrillo (1994), Compte and Jehiel (2010), 
and Lehrer and Scarsini (2013), for example. In contrast to our work, these papers start with 
a coalitional game and a notion of the core and then propose a non-cooperative procedure to 
implement the core. Our approach is different. We start with an extensive form game and the 
notion of subgame perfection and show that each subgame-perfect core payoff vector can be 

5 Rubinstein (1980) introduces a strong perfect equilibrium for a “super” game. But a concept of a subgame-perfect 
strong Nash equilibrium for a general extensive game is apparently missing in the literature.
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implemented as a SPNE payoff vector of an extensive form game that is closely related to the 
original game.

Our work adds to the literature on core concepts for dynamic games, a field that has long at-
tracted the interest of economists. Notably, Gale (1978) explores the issue of time consistency in 
the Arrow-Debreu model with dated commodities and introduces the sequential core which con-
sists of allocations that cannot be improved upon by anyone at any date. Similarly, Forges et al. 
(2002) propose the ex-ante incentive compatible core. Becker and Chakrabarti (1995) propose the 
recursive core as the set of allocations such that no coalition can improve upon its consumption 
stream at any time. In contrast, our paper proposes a core concept for a general extensive form 
game that satisfies subgame perfection and that can be applied to a variety of specific dynamic 
models.

Our work differs from the interesting literature on the core of sequences of coalitional games; 
see, for example, Kranich et al. (2005), Habis and Herings (2010), and Predtetchinski et al. 
(2006). In contrast to our paper, these studies start from a coalitional game as the primitive 
and do not consider subgame perfectness; instead they place rules on admissible deviations. We 
conjecture that investigation of the subgame-perfect core of the sort of dynamic games considered 
in these papers would be a fruitful line of research, but beyond the scope of this paper.

1.2. Organization of the paper

The paper is organized as follows. Section 2 introduces notation and a motivating example. 
Section 3 introduces the definition of the subgame-perfect core and interprets a subgame-perfect 
core payoff vector as a subgame-perfect Nash equilibrium payoff vector of a closely related ex-
tensive form game. Section 4 derives a coalitional game from an extensive game and establishes 
additional properties and interpretations of the subgame-perfect core. Section 5 motivates and in-
troduces the concept of a SPSNE for a general extensive game. Section 6 discusses an application 
of the subgame-perfect core to a dynamic game of climate change. Section 7 makes concluding 
remarks that further address the significance of this work and future directions for research. The 
proofs for the results in the paper are gathered in the Appendix.

2. The framework and a motivating example

To introduce the subgame-perfect core in simplest terms, we restrict ourselves primarily to 
finite and perfect information extensive games,6 but note later in subsection 3.1 that the subgame-
perfect core can be defined and applied to a more general class of extensive games.

We denote a finite and perfect information extensive game with transferable utilities by � =
(N, K, P, u) where N = {1, . . . , n} is the set of players and K is the game tree with origin at o. 
Let Z denote the set of terminal nodes of the game tree K and X denote the set of non-terminal 
nodes, i.e. the decision nodes. The player partition of X is given by P = {X1, . . . , Xn} where Xi

is the set of all decision nodes of player i ∈ N . The payoff function is u: Z → Rn where ui(z)

denotes the payoff of player i at terminal node z. A history leading to a terminal node z is the 
path that connects the origin of the game tree K to the terminal node z. For now, we do not state 
players’ strategy sets explicitly.

6 To avoid any ambiguity, we follow, throughout this paper, the definition of a finite and perfect information game in 
Osborne and Rubinstein (1994: Chapter 6).
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Fig. 1. A centipede game with two players and induced games.

2.1. The induced extensive games

Given a finite and perfect information extensive game � = (N, K, P, u) and a coalition S ⊂ N

the induced extensive game �S = (NS, KS, P S, uS) is defined as follows:

• NS = {S, (i)i∈N\S}: the player set wherein coalition S and all i ∈ N\S are the players (thus 
the induced game has n − s + 1 players where s is the cardinality of S);

• KS = K , i.e., the game tree is same as the game tree of the original game with player set N
(thus the set of decision and terminal nodes remain X and Z, respectively);

• P S = {XS, (Xi)i∈N\S} the player partition of X where XS = ∪j∈SXj is the set of decision 
nodes of members of coalition S;

• uS = (uS, (ui)i∈N\S): the profile of payoff functions of the players in NS where for all 
z ∈ Z, uS(z) = ∑

j∈S uj (z) is the payoff function of S and ui(z) is the payoff function of 
i ∈ N\S.

For each S ⊂ N , the induced game �S = (NS, KS, P S, uS) represents the situation in which the 
players in S form a coalition to fully coordinate their decisions in all subgames. It is worth noting 
that if S is a singleton coalition, then �S = �. Induced games for extensive games that are not 
finite and perfect information are defined similarly.

2.2. An example

The centipede game (Rosenthal, 1981) has been at the center of the debate concerning the 
SPNE concept (see e.g. Binmore, 1996 and Aumann, 1996).7 The “inefficiency” of the unique 
SPNE of this game has been often tested in experiments (McKelvey and Palfrey, 1992). In this 
game, there are two players, labeled 1 and 2. The players have 1 dollar each in the beginning of 
the game. When a player says “continue”, 1 dollar is taken by a regulator from her pile and 2 
dollars are put in her opponent’s pile. As soon as either player says “stop”, play is terminated, 
and each player receives the money currently in her pile. The play also stops if both players’ 
piles reach 2 dollars each. This game is depicted in Fig. 1.

The node x1 is the origin of the game tree K , the set N = {1, 2} is the set of players, the set 
Z = {z1, z2, z3} is the set of terminal nodes, the set X = {x1, x2} is the set of decision nodes, the 
set P = {{x1}, {x2}} is the player partition, and the function u; Z → R2 where u(z1) = (1, 1), 
u(z2) = (0, 3), and u(z3) = (2, 2) is the payoff function. The game has three terminal histories, 

7 This game has also been used to motivate the extensive form trembling-hand perfect Nash equilibrium (Selten, 1975).
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Fig. 2. The game tree when both players form a coalition.

i.e., three paths each connecting the origin x1 of the game tree K to one of the terminal nodes 
z1, z2, or z3. Since the game has two players, it has only three induced games: �{1}, �{2}, and 
�{1,2}. By definition, �{1} = �{2} = �. The induced game �{1,2}(= �N) when players 1 and 2 
form a coalition to fully coordinate their actions in all subgames, is depicted in Fig. 2. The game 
tree is the same, but now we have a one-player game with player set {N}. So P N = {{x1, x2}}, 
uN(z1) = 2, uN(z2) = 3, and uN(z3) = 4. The game �N also has three terminal histories, which 
are the same as in the original game �.

2.3. Defining achievable coalitional payoffs

We define the payoff that each coalition can achieve in each subgame and illustrate the same 
by means of a centipede game. For this, we first define the induced subgame with origin at x for 
each x ∈ X.

Given a decision node x ∈ X, let �x denote the subgame with origin at x. If the origin of � is 
o, then �o = � and for any x �= o, the game �x is a proper subgame of �. It may be noted that the 
player set of a proper subgame �x can be smaller than the set N . A player is active in subgame 
�x if some decision node in �x is a decision node of the player. Similarly, a coalition is active in 
subgame �x if all its members are active in the subgame �x . Let S be a coalition which is active 
in subgame �x . Then, the induced game �S

x is defined from �x in exactly the same way as the 
induced game �S is defined from �. Clearly, �S

o = �S and if � is a finite and perfect information 
game, then so is each induced game �S

x, x ∈ X and S an active coalition in �x . Therefore, if 
� is a finite and perfect information game, then each induced game �S

x, x ∈ X and S an active 
coalition in �x , admits a SPNE, because, as is well-known, every finite and perfect information 
game admits a SPNE.

In what follows, it will often be convenient to refer to “a coalition which is active in the 
subgame with origin at x” simply as “a coalition active at x”. It is worth noting that the family of 
induced games �S

x , x ∈ X and S an active coalition in �x , includes all subgames of the original 
game �, as �{i}

x = �x for each i and x ∈ X.
Since a SPNE of an extensive game, by definition, induces a Nash equilibrium in each sub-

game of the extensive game, a SPNE strategy of coalition S in the induced game �S
x (S active at 

x), prescribes a play that is optimal for S from node x onwards, given the equilibrium strategies 
of the remaining active individual players. Thus, a SPNE payoff of coalition S in the induced 
game �S

x is a payoff that S can achieve, if the game reaches node x, without cooperation of the 
players outside S.

In summary, the SPNE of the family of extensive games �S
x, x ∈ X and S an active coalition 

in �x , determine the payoffs that coalition S can achieve at each decision node x of extensive 
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game � without cooperation of the remaining players. If the induced game �S
x has more than one 

SPNE, then a SPNE with highest payoff for coalition S is selected as the achievable payoff of 
coalition S at x. Selecting the highest SPNE payoff of S in the induced game �S

x as the achievable 
payoff of S at x leads to a core concept which is independent of which SPNE of the induced game 
�S

x may be actually played. However, we choose the highest SPNE payoff only for the sake of 
concreteness and because of lack of refinement procedures that can select a unique SPNE. If 
there were a refinement procedure to select among the SPNEs, our approach could be applied. 
As will be clear, the subgame-perfect core defined below, by selecting the highest SPNE payoffs 
as the achievable payoffs, is a subset of any other core that may be similarly defined by selecting 
among the SPNE payoffs that are not necessarily equal to the highest SPNE payoffs. Another 
aspect of our definition of achievable payoffs is that if a coalition deviates, then the remaining 
players form singletons – they do not form a coalition of their own. We make this assumption 
because (i) it leads to a core concept that, in addition to its other properties, nicely relates to both 
subgame-perfect strong and coalition-proof Nash equilibria, in which also the remaining players 
are assumed to form singletons, and (ii) assuming that the remaining players form a coalition 
of their own or some other coalition structure is no less arbitrary then assuming that they form 
singletons.8 Yet our approach goes beyond that. As we will explain in the concluding section, 
our approach can also be applied if the remaining players are assumed to form a coalition of their 
own or some other coalition structure.

To illustrate the additional definitions just introduced, we return to the centipede game in 
Fig. 1. The SPNE payoff of coalition {1} in the induced game �{1}

x1 is 1 dollar and its SPNE 
strategy is s1. Similarly, the SPNE payoff of coalition {2} in the induced game �{2}

x1 is 1 dollar 
and its SPNE strategy is s2c1 (= play s2 if 1 plays c1). The SPNE payoff of player N in the 
single player game �N

x1
(= �N ) is 4 dollars and its SPNE strategy is (c1, c2c1) (= play c1; play 

c2 if N plays c1). It is noteworthy that the SPNE strategy (c1, c2c1) of coalition N is not the 
same as the SPNE strategies s1 and s2c1 of coalitions {1} and {2}, respectively. Thus, the history 
generated by the SPNE strategy of coalition N is not the same as the history generated by the 
SPNE strategy of either coalition {1} or {2}.

2.3.1. Varying coalitional payoffs
The need to define the SPNE payoffs of each active coalition at each decision node of an 

extensive game arises from the fact that the SPNE payoffs may vary and be higher or lower9 as 
the game unfolds along a history, as seen, for instance, in the centipede game in Fig. 1.

The SPNE payoff of the grand coalition N is 4 dollars, as implied by the unique SPNE of 
�N

x1
= �N . If coalition {1} decides to deviate from the SPNE strategy of N in the beginning of 

the game, i.e. at x1, its achievable payoff is 1, as implied by the (unique) SPNE of �{1}
x1 . Similarly, 

if {2} decides to deviate in the beginning of the game, its achievable payoff is 1, as implied by 
the SPNE of �{2}

x1 . In sum, all three coalitions {1}, {2} and N , which are active at x1, can achieve 
payoffs of 1, 1, and 4, respectively. But if N follows its SPNE strategy (c1, c2c1) in the game 
�N

x1
to achieve its highest payoff of 4, the game would reach the decision node x2. Coalition {2}

8 This is the so-called γ -core assumption. Chander (2007; 2018a; 2018b) justifies this assumption in the context of a 
strategic game by showing that, in an intuitive game of coalition formation, forming singletons is a SPNE strategy of the 
remaining players, i.e. the players in the complement of a deviating coalition indeed have incentives to form singletons. 
Chander (2017) provides a justification for this assumption in the context of a specific dynamic game.

9 However, as will be clear below, the lower payoffs are not binding. Only the higher payoffs matter.
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is active in the subgame with origin at x2 and can achieve a higher payoff of 3 (> 1) by taking 
action s2.

The above analysis of the centipede game demonstrates that the relative “bargaining power” 
of coalitions following their SPNE strategies may change as the game unfolds along the history 
generated by a strategy profile that may be different from their SPNE strategies. For instance, as 
noted above, coalition {2} can achieve a payoff of only 1 by deviating from the SPNE strategy of 
N in the subgame with origin at x1, but a payoff of 3 by deviating in the subgame with origin at 
x2. This is possible, despite the fact that coalition {2} follows its SPNE strategy in the induced 
game �{2}

x1 , because x2 is not reached in the history generated by the SPNE of the induced game 
�

{2}
x1 . More generally, this is possible because a SPNE strategy of a coalition (e.g. {1, 2}) is not 

necessarily a SPNE strategy of a proper subcoalition (e.g. {2}).
In summary, as the centipede game in Fig. 1 illustrates, the payoff achievable by a coalition 

may be higher (or lower) as a game unfolds along the history generated by a strategy profile. This 
can be seen even more starkly by considering a centipede game with more “legs”, as below:

Coalitions {1} and N are active in all but the last subgame with origin at x18. The SPNE 
payoff of N is 20 in all subgames in which it is active. The SPNE payoff of coalition {1} in the 
subgame with origin at xi is (i + 1)/1 if i is odd. Therefore, the SPNE payoff of {1} is higher in 
every successive alternating subgame as the game unfolds along the longest terminal history of 
the game. Similarly, for coalition {2}. To conclude, any meaningful core concept for an extensive 
game must take account of the rising bargaining power of the coalitions as the game unfolds 
along a history of the game.

3. The subgame-perfect core

We need some additional notions. A payoff vector (p1, . . . , pn) is feasible if 
∑

i∈N pi =
uN(z) for some terminal node z.10 We shall refer to a history leading to a terminal node for 
which a payoff vector (p1, . . . , pn) is feasible as a history leading to the feasible payoff vector
(p1, . . . , pn). It may be noted that there can be more than one history leading to a feasible payoff 
vector (p1, . . . , pn). Indeed, this is the case if and only if uN(z) = uN(z′) for two or more ter-
minal nodes z and z′. Given a finite and perfect information game � and the family of induced 
games �S

x , let wγ (S; x) denote the highest SPNE payoff of coalition S in the induced subgame 
�S

x (by definition of induced subgame �S
x , coalition S must be active in the subgame �x).

Given the set of coalitional payoffs wγ (S; x), x ∈ X and S an active coalition at x, the 
subgame-perfect core of an extensive game is the set of all feasible payoff vectors such that 
no coalition (including the grand coalition N ) can achieve a payoff that is higher than its to-
tal payoff in any feasible payoff vector in the set by deviating at any decision node along the 
histories leading to the payoff vector.

Definition 1. The subgame-perfect core of a finite and perfect information game � is the set 
of all feasible payoff vectors (p1, . . . , pn) such that, for all decision nodes x along any history 
leading to a payoff vector (p1, . . . , pn) in the set and all coalitions S ⊂ N that are active at x, the 
coalitional payoff wγ (S; x) ≤ ∑

i∈S pi .11

10 It may be noted that a feasible payoff vector is not necessarily “efficient”.
11 The symbol “⊂” denotes weak inclusion unless stated otherwise.
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Since every history of game � begins at origin o of � and coalition N is active at origin o, 
Definition 1 implies that the subgame-perfect core of � must be a subset of the set of feasi-
ble payoff vectors (p1, . . . , pn) such that 

∑
i∈N pi ≥ wγ (N; o). Let z∗ ∈ Z be a terminal node 

such that uN(z∗) ≥ uN(z) for all z ∈ Z.12 Then, wγ (N; o) = uN(z∗) and, therefore, 
∑

i∈N pi =
wγ (N; o) = uN(z∗), because there is no history leading to a payoff vector (p1, . . . , pn) such 
that 

∑
i∈N pi > wγ (N; o) = uN(z∗) ≥ uN(z) for all z ∈ Z, but there is a history or histories 

leading to a payoff vector (p1, . . . , pn) such that 
∑

i∈N pi = wγ (N; o) = uN(z∗) ≥ uN(z) for all 
z ∈ Z. In summary, the subgame-perfect core of � is a subset of the set of feasible payoff vectors 
(p1, . . . , pn) that are “efficient” in the sense that 

∑
i∈N pi = uN(z∗) ≥ uN(z) for all z ∈ Z.

Definition 1 does not rule out the possibility that the terminal node at which the total payoff 
uN(z) of the grand coalition is highest may not be unique. Accordingly, Definition 1 takes into 
account the fact that the SPNE payoffs that coalitions can achieve at nodes along different his-
tories leading to different terminal nodes with highest payoff for the grand coalition N may be 
different. It is necessary to include all histories leading to terminal nodes with highest payoff for 
the grand coalition N because each of them is generated by a SPNE of the induced game �N

and ignoring any one of them would be arbitrary. But, as we will discuss, including all histories 
leading to terminal nodes with highest payoff for N implies a core concept that may be con-
sidered “strong”. For now, we note some general properties of the subgame-perfect core as per 
Definition 1.

Let Z∗ ⊂ Z denote the set of all terminal nodes z∗ ∈ Z such that uN(z∗) ≥ uN(z) for all 
z ∈ Z. Let X(z∗) denote the set of decision nodes along the history leading to the terminal node 
z∗ ∈ Z∗. Let X∗ = ∪z∗∈Z∗X(z∗).

Definition 1 implies that the subgame-perfect core payoff vectors are efficient and such that 
no coalition, active at any decision node in the set X∗, can achieve a payoff that is higher than 
its total payoff in any subgame-perfect core payoff vector. Since the origin o ∈ X∗ and every 
singleton coalition is active at origin o, every subgame-perfect core payoff vector (p1, . . . , pn) 
must be such that wγ ({i}; o) ≤ pi for each singleton coalition {i} ⊂ N . By definition, wγ ({i}; o)

is equal to the SPNE payoff of player i in the induced game �{i} = �. Thus, every subgame-
perfect core payoff vector is such that the payoff of each player i is at least as high as the 
payoff she would obtain if she were to deviate at the origin o and play her individual SPNE 
strategy. In other words, no player stands to lose by cooperating (rather than non-cooperating) 
with the other players and obtain her subgame-perfect core payoff. This property of the subgame-
perfect core payoffs comes from our assumption that the players in the complement of a deviating 
coalition form singletons, as then, and only then, the payoff that a singleton coalition can obtain 
by deviating at the origin is necessarily equal to its SPNE payoff. The payoff of a singleton 
coalition may not be equal to its SPNE payoff and can be lower if the player in the complement 
form one or more coalitions and the game exhibits “negative externalities”.

3.1. A more general class of games

We have restricted ourselves to finite and perfect information games to enable us to motivate 
and present our new concept in simplest terms. As every finite game of perfect information is 
known to admit a SPNE, we can simply presume the existence of a SPNE for each induced game 

12 The existence of such a terminal node is ensured because the extensive game �, by assumption, is finite.
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Fig. 3. A centipede game with rising subgame-perfect Nash equilibrium payoffs of coalitions.

�S
x , x ∈ X, and, therefore, of the highest coalitional payoffs wγ (S; x), x ∈ X, which are used in 

the definition of the subgame-perfect core.
However, the subgame-perfect core can be defined for, and is applicable to, a wider class 

of games, because, as is well-known, a SPNE may also exist for each induced game that is 
neither finite nor perfect information. One such class of games, discussed below, are dynamic 
games of climate change, which are neither finite nor perfect information. Another example is 
Rubinstein’s infinite bargaining game, which is perfect information but not finite.13 Yet, in both 
these classes of games each induced game admits a unique SPNE, which guaranties existence 
of payoffs wγ (S; x), x ∈ X and S an active coalition at x. Other potential applications of the 
subgame-perfect core include dynamic models with public goods, dynamic models of oligopoly, 
the chain store games, and repeated games in which a strategic game is played in each period.

More generally, the subgame-perfect core can be defined for, and is applicable to, any situation 
that can be modeled as an extensive game in which (i) each induced game �S

x, x ∈ X∗, admits a 
SPNE, and (ii) either the number of SPNEs is finite or each player’s strategy set is compact and 
its payoff is a continuous function of the strategies. In case of (ii), each achievable coalitional 
payoff wγ (S; x), x ∈ X∗, can be taken to be equal to the supremum of SPNE payoffs of coalition 
S in the induced game �S

x, x ∈ X∗.

3.2. An illustration of the subgame perfect core

It is worth illustrating the subgame-perfect core by means of the centipede game in Fig. 3. 
In this game, the total payoff of coalition N is highest at the last terminal node and equal to 20 
dollars. Therefore, the set Z∗ of terminal nodes with highest payoff for the grand coalition is a 
singleton. Player 2 is active in all subgames and player 1 and the grand coalition N are active 
in all but the last subgame. The payoffs wγ ({1}; x) of player 1, wγ ({2}; x) of player 2, and 
wγ (N; x), where N = {1, 2}, are well-defined for each decision node x at which they are active. 
The set X∗ of decision nodes along the history leading to the unique terminal node at which the 
payoff of the grand coalition N is highest includes all decision nodes of the game. The payoff 
wγ ({1}; x), x ∈ X∗, of player 1 is highest at the last decision node x17 at which it is active and 
is equal to 9 dollars. Similarly, the payoff wγ ({2}, x), x ∈ X∗, of player 2 is highest in the last 
decision node x18 at which it is active and equal to 11 dollars. These achievable payoffs imply 
that the subgame-perfect core of this game is non-empty and consists of the unique payoff vector 
(9, 11). This payoff vector is “efficient” and cannot be rejected by any coalition in any subgame 
in which the coalition is active.

13 In this game, as will be seen, the set X∗ of decision nodes along the histories leading to the highest payoff for the 
grand coalition is finite, even though the game is not finite and both X and Z include infinitely many nodes.
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However, it may be noted that the subgame-perfect core may not generally consist of a unique
payoff vector. In centipede games with non-empty cores, increasing the total payoff at the final 
or penultimate terminal node will lead to a larger core (i.e., one with larger measure), while 
decreasing it may lead to an empty core. For instance, the subgame-perfect core consists of 
infinitely many payoff vectors if the payoffs at the final terminal node z19 in the centipede game 
in Fig. 3 are (15, 15) instead of (10, 10), but is empty if the players’ payoffs at the final terminal 
node are (9, 9) instead of (10, 10).14

The centipede game in Fig. 3 admits a unique SPNE and the equilibrium strategy for each 
player is to choose “stop” whenever it is her turn to move. In this SPNE equilibrium the payoffs 
are $ 1 each even though $10 for each is possible. For this reason, the centipede game has often 
appeared in the debates concerning the SPNE concept. Several experimental studies concerning 
the centipede game have demonstrated that the SPNE is rarely observed. Instead, players regu-
larly show partial cooperation: playing “continue” for several moves before eventually choosing 
“stop”. It is rare for the players to cooperate through the whole game. See McKelvey and Palfrey 
(1992) and Nagel and Tang (1998) among others for experimental evidence in support of this 
phenomenon.

The subgame-perfect core of the centipede game in Fig. 3 has an additional important prop-
erty: Consider a modified centipede game which is identical to the original game except that the 
payoffs at the last terminal node c19 have been replaced with the subgame-perfect core payoffs 
(9, 11). It is easily verified, by backward induction, that the subgame-perfect core payoff vector 
(9, 11) is a SPNE payoff vector of the so-modified game. This means that each subgame perfect 
core payoff vector (a cooperative solution) can be supported as a SPNE payoff vector (a non-
cooperative solution) of an extensive game that differs from the original game only in terms of 
players’ payoffs at just the terminal node with the highest payoff for the grand coalition.15 We 
show (Proposition 1) below that this property holds not just for the centipede game but for ev-
ery finite and perfect information game. This also leads us to conjecture that the subgame perfect 
core of a general two-player perfect information extensive game is non-empty if the game admits 
a SPNE with an efficient outcome. We confirm this conjecture as Proposition 6 below.

3.3. A non-cooperative implementation of the subgame-perfect core

We define a strategic-transform of an extensive game: (a) If the subgame-perfect core of an 
extensive game is non-empty, a strategic-transform of the extensive game is a modified extensive 
game in which the players’ payoffs at all terminal nodes with highest total payoff for the grand 
coalition have been replaced by a subgame-perfect core payoff vector; (b) if the subgame-perfect 
core is empty, a strategic-transform of the extensive game is same as the original extensive game.

Thus, every finite and perfect information extensive game – whether its subgame perfect core 
is non-empty or not – has a strategic-transform. We show that if the subgame-perfect core of an 

14 It may also be noted that the subgame-perfect core may become smaller, but not empty, if the payoffs at the final 
terminal node z19 are (14, 14) instead of (15, 15) or (13, 13) instead of (14, 14) and so on. The subgame-perfect core 
eventually reaches the “tipping point” and becomes empty if the payoffs at the final terminal node z19are reduced below 
(10, 10), say to (9.9, 9.9).
15 Given that in the modified centipede game, unlike the original game, there is no conflict between maximization of 
individual and group payoffs, it would be interesting to conduct experiments to check whether in such centipede games 
also, which have not been considered in experimental studies so far, the players would cooperate only partially.
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extensive game is non-empty, each subgame-perfect core payoff vector is a SPNE payoff vector 
of a strategic-transform of the extensive game.

Proposition 1. If the subgame-perfect core of a finite and perfect information game � is non-
empty, each subgame-perfect core payoff vector is a SPNE payoff vector of a strategic-transform 
�∗ of �.

The proof of Proposition 1 is in the Appendix. As an application to the infinite bargaining 
game below demonstrates, the game need not necessarily be finite for Proposition 1 to hold.

Proposition 1 justifies the subgame-perfect core as a solution of a non-cooperative game as 
it shows that the subgame-perfect core payoff vectors (a cooperative solution concept) can be 
implemented as a SPNE (a non-cooperative solution concept) of a strategic transform of the 
original game. This means if maximizing social welfare (i.e. the total payoff) requires the players 
to cooperate and coordinate their actions, then they can be incentivized to take those actions in a 
self-enforcing manner.

A more “applied” message of Proposition 1 is that, if the subgame-perfect core is non-empty, 
then credible cooperation is possible and each subgame-perfect core payoff vector is a solution 
of the game in the sense that it is a SPNE payoff vector of a strategic-transform of the game. But 
if the subgame-perfect core is empty, then no credible cooperation is possible and a SPNE payoff 
vector is a solution of the game, as it is a SPNE payoff vector of a strategic-transform of the 
game. In other words, every finite and perfect information extensive form game has a solution 
irrespective of whether its subgame-perfect core is empty or non-empty. This solution is efficient 
if the subgame-perfect core is empty, but may not be efficient if the core is empty.

4. Additional characterization of the subgame-perfect core

Aumann (1959) defines the core of a strategic game by converting the strategic game into a 
coalitional game. In this section, we extend Aumann’s approach to extensive games by converting 
an extensive form game into a coalitional game. However, the extension is not straightforward. 
First, as already noted, dealing with an extensive game creates new challenges as the payoff that 
a coalition can achieve may not be the same in every subgame. Second, Aumann (1959) assumes 
that the players in the complement of a deviating coalition max-min or min-max the payoff of 
the deviating coalition by adopting strategies that are least favorable to the deviating coalition.16

Whereas our approach is to assume that the players in the complement of a deviating coalition 
adopt their individually best reply strategies that satisfy subgame-perfection.17 For each S ⊂ N , 
let

wγ (S) = sup
x∈X∗

wγ (S;x),

where the supremum is taken only over those decision nodes x ∈ X∗ at which coalition S is 
active. However, it may be noted that the origin o ∈ X∗ and every coalition S ⊂ N is active at 

16 See Avrachenkov et al. (2013) for an application of Aumann’s max-min approach to a dynamic game.
17 Chander (2007) shows that to max-min or min-max the payoff of a deviating coalition, the players in the complement 
of the deviating coalition may not follow even their dominant strategies. See Chander (2007; 2018a; 2018b) for a detailed 
discussion of the difference between our approach and Aumann’s max-min or min-max approach in the context of a 
strategic game.
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least at origin o. Therefore, the function wγ is defined for every coalition S ⊂ N . For this reason, 
we shall refer to the real valued function wγ (S), S ⊂ N , as the worth function of the extensive 
game �.

Proposition 2. Every finite and perfect information extensive game � has a coalitional game 
form, to be denoted by (wγ , N ), and the subgame-perfect core of the extensive game � is equal 
to the core of the coalitional game (wγ , N).

The proof of Proposition 2 is in the Appendix. The proposition implies that the subgame-
perfect core of an extensive game is non-empty if and only if its coalitional game form (wγ , N ) 
is balanced (Bondareva, 1963 and Shapley, 1967).

Remark. Proposition 2 has important implications as it associates a coalitional game with an ex-
tensive game. The literature on extensive games has been growing separately from the literature 
on coalitional games. Proposition 2 bridges the two literatures and opens the way for applica-
tion of concepts and ideas from the vast literature on coalitional games to extensive games. To 
illustrate, every coalitional game, as is well-known, has a Shapley value (Shapley, 1953). Thus, 
by Proposition 2, every finite and perfect information extensive game has a Shapley value. In 
other words, every finite and perfect information extensive game has a single-valued solution 
that maximizes social welfare and is “fair”. Another application is that a finite and perfect in-
formation extensive game has a non-empty subgame-perfect core if its coalitional game form is 
convex (Shapley, 1971).

We establish some additional properties of the subgame-perfect core. To this end, notice that 
if coalition S is active in subgame �x , then so is every coalition S′ ⊂ S. Therefore, for each 
node x ∈ X and active coalition S in �x , wγ (S′; x), S′ ⊂ S, satisfies the standard definition of a 
worth function of a coalitional game with player set S. Because N is an active coalition at the 
origin o of �, we interpret the core of the coalitional game with worth function wγ (S; o), S ⊂ N , 
as the core (in contrast to the subgame-perfect core, which, by Proposition 2, is the core of the 
coalitional game with worth function wγ (S), S ⊂ N ) of the extensive game �. Similarly, for each 
x ∈ X, we define the core of the coalitional game with worth function wγ (S′; x), S′ ⊂ S, where 
S is the largest coalition that is active in the subgame �x , as the core of �x . We show that the 
subgame-perfect core of an extensive game � is a refinement of the core of �. To show this, we 
interpret the subgame-perfect core of � as a refinement of the cores of the family of subgames 
�x, x ∈ X∗.

Notice that the family of subgames �x, x ∈ X∗ includes at least one subgame in which all n
players are active, namely, the subgame �(= �o). But in some games, this family of subgames 
may include more than one subgame in which all n players are active: for example, in the cen-
tipede game with two players in Fig. 3, the set X∗ includes all decision nodes and both (i.e., all 
n) players are active in all but one subgame in the family �x, x ∈ X∗. The core of the centipede 
game in Fig. 3 consists of the set of payoff vectors (p1, p2) such that p1 + p2 = 20, p1 ≥ 1, 
and p2 ≥ 1, because wγ ({1, 2}; x1) = 20, wγ ({1}; x1) = 1, and wγ ({2}; x1) = 1. Whereas the 
subgame-perfect core of this game, as noted in Section 3, consists of the unique payoff vector 
(9, 11), because wγ ({1, 2}) = sup

x∈X∗\x18

wγ ({1, 2}; x) = 20, wγ ({1}) = sup
x∈X∗\x18

wγ ({1}; x) = 9, 

and wγ (2) = sup
∗
wγ ({2}; x) = 11, and, therefore, the subgame-perfect core consists of payoff 
x∈X
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vectors (p1, p2) such that p1 + p2 = 20, p1 ≥ 9, and p2 ≥ 11. Thus, the subgame-perfect core is 
a subset of the core of the game.

Proposition 3. The subgame-perfect core of a finite and perfect information game � with n
players is a subset of the intersection of the cores of those subgames in the family �x , x ∈ X∗, in 
which all n players are active. If all n players are active in all subgames in the family �x, x ∈ X∗, 
then it is exactly equal to the intersection.

The proof of Proposition 3 is in the Appendix. On reflection, Proposition 3 really shows that 
the subgame-perfect core is a subset of the intersection of the cores of subgames in a family of 
subgames and is exactly equal to the intersection if all n players are active in all subgames in the 
family.18 Proposition 3 also implies that the subgame-perfect core is non-empty only if the core 
of every n-player game in the family of subgames �x, x ∈ X∗, is non-empty.

The centipede game � in Fig. 3 illustrates the first part of Proposition 3. In this game, X∗ =
{x1, . . . , x18}. Both players are active in all but the subgame �x18 in the family of subgames
�x, x ∈ X∗. The core of subgame �xi

, i ∈ {1, . . . , 17}, consists of payoff vectors (p1, p2) such 
that p1 +p2 = 20, p1 ≥ i+1

2 , and p2 ≥ i+1
2 , if i is odd, or p1 +p2 = 20, p1 ≥ i−2

2 , and p2 ≥ i+4
2 , 

if i is even. Therefore, the intersection of the cores of the subgames in which all players are active 
(i.e. the subgames �xi

, i = 1, . . . , 17) is the set p1 + p2 = 20, p1 ≥ 9, and p2 ≥ 10. Whereas the 
subgame-perfect core of � is a subset of this intersection as it consists of the unique payoff 
vector (p1, p2) = (9, 11), because in the subgame �x18 in the family of subgames �x, x ∈ X∗, 
only player 2 is active, and can obtain a SPNE payoff of 11.

Our definition of the worth function of an extensive game does not rule out the possibility that 
the worth function wγ (S), S ⊂ N , of an extensive game � may be equal to the worth function 
wγ (S; x), S ⊂ N , of some subgame �x, x ∈ X∗, in which all n players are active.19 Indeed, if 
the family of subgames �x , x ∈ X∗, includes a subgame in which all n players are active, say 
�x∗, such that for each S ⊂ N , wγ (S) = wγ (S; x∗), then the subgame-perfect core of � and 
the core of the subgame �x∗ are equal, because their worth functions are equal. If x∗ �= o, the 
subgame-perfect core of � could be smaller than the core of � (i.e. the core of the coalitional 
game with worth function wγ (S; o), S ⊂ N ). But if x∗ = o, then no refinement of the core occurs 
as the game unfolds along the nodes in the set X∗ and the subgame-perfect core of � is equal to 
the core of �. This is indeed so in Rubinstein bargaining game we discuss next.

4.1. The two-player infinite bargaining game of alternating offers (Rubinstein, 1982)

Rubinstein game, to be denoted by �, begins in period 1 in which player 1 makes an offer of 
a split (a real number between 0 and 1) to player 2; player 2 either accepts or rejects. Acceptance 
by player 2 ends the game and the proposed split is immediately implemented. If player 2 rejects, 
nothing happens until period 2. In period 2, the players’ roles are reversed; player 2 makes an 
offer of a split to player 1 and player 1 then accepts or rejects. The bargaining can potentially 

18 See Chander (2017) for a n-player game in which all n players are active in all subgames. However, a simple two-
player game (with imperfect information) in which both players are active in all subgames is given in Fig. 4 in the 
Appendix. As Proposition 3 shows, the subgame-perfect core of this game is exactly equal to the intersection of the cores 
of all three subgames in the family.
19 If the number of active players is less than n, then the function wγ (S; x) is not defined for all coalitions S ⊂ N , and 
thus is not comparable to the worth function wγ (S), S ⊂ N .
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go on forever. If that indeed happens, both players get zero. Each player i “discounts” the future 
using the discount factor δi ∈ (0 1). That is, a dollar received by player i in period t is worth 
only δt−1

i in period 1 dollars. Rubinstein (1982) shows that this game admits a unique SPNE, in 
which

• Player 1 always offers p∗ = (p∗
1, p∗

2) and accepts an offer if and only if q1 ≥ q∗
1• Player 2 always offers q∗ = (q∗

1 , q∗
2 ) and accepts a proposal p if and only if p1 ≥ p∗

1 ,

where

p∗ =
(

1 − δ2

1 − δ1δ2
,
δ2(1 − δ1)

1 − δ1δ2

)

q∗ =
(

δ1(1 − δ2)

1 − δ1δ2
,

1 − δ1

1 − δ1δ2

)
.

This equilibrium strategy profile implies an outcome in which player 1 offers p∗ at the start of 
the game, and player 2 immediately accepts. Therefore, p∗ is the unique SPNE payoff vector 
and, given that there are only two players, the unique SPNE is also the unique SPNE in both 
the induced games �{1} and �{2}. Hence, wγ ({1}; o) = p∗

1, wγ ({2}; o) = p∗
2 , and wγ ({1, 2}; o) =

1, where o is the origin of the game. Since each subgame has exactly the same structure as 
the original game and the future payoffs are discounted, X∗ = {o}, and, therefore, wγ ({1}) =
wγ ({1}; o) = p∗

1, wγ ({2}) = wγ ({2}; o) = p∗
2 , and wγ ({1, 2}) = wγ ({1, 2}; o) = 1. Since p∗

1 +
p∗

2 = 1, the subgame-perfect core is non-empty and consists of the unique SPNE payoff vector 
p∗, whatever be the values of the discount factors δ1 and δ2.

It may be noted that Rubinstein game is not a finite game. Yet we could prove the existence 
of a non-empty subgame-perfect core because each subgame in the family �x, x ∈ X∗, admits a 
unique SPNE.

This shows that in Rubinstein two-player infinite bargaining game, like the modified cen-
tipede game discussed above, there is no conflict between maximization of individual and group 
payoffs. Furthermore, Binmore et al. (1986) show that if the players are patient (i.e., δ1, δ2 → 1
in our notation), the SPNE payoff vector p∗ is also the Nash solution of the bilateral bargain-
ing game (Nash, 1950). This means that if the players are patient, the equivalence between the 
subgame-perfect core and the SPNE for the two-player infinite bargaining game of alternating 
offers, as established above, also implies equivalence between the subgame-perfect core and the 
Nash bargaining solution.

4.2. A further characterization of the subgame-perfect core

We now introduce an alternative but equivalent definition of the subgame-perfect core that 
leads to its further characterization. Recall the definitions of the sets Z∗ and X(z∗), z∗ ∈ Z∗, in 
the third paragraph following Definition 1. For each z∗ ∈ Z∗ and S ⊂ N , let

w
γ
z∗ (S) = sup

x∈X(z∗)
wγ (S;x) ,

where the supremum is taken only over those nodes x ∈ X(z∗) at which S is active. Because the 
origin of the game o ∈ X(z∗) for every z∗ ∈ Z∗, each coalition S is active at least at one node x ∈
X(z∗). Moreover, wγ

z∗(N) = uN(z∗). Therefore, for each z∗ ∈ Z∗, the function wγ
z∗(S), S ⊂ N , 

is a worth function of a coalitional game. Accordingly, we shall refer to wγ
∗(S), S ⊂ N , as the 
z
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worth function for the coalitional game corresponding to the terminal node z∗. Thus, there are 
as many coalitional games associated with an extensive game as the number of terminal nodes in 
the set Z∗. We shall refer to the core of a coalitional game corresponding to a terminal node z∗
as the subgame-perfect core corresponding to the terminal node z∗.

Proposition 4. The subgame-perfect core of a finite and perfect information game � is equal to 
the intersection of the cores of all coalitional games with worth functions wγ

z∗, z∗ ∈ Z∗.

The proof of Proposition 4 is in the Appendix. The proposition suggests an additional interpre-
tation of the subgame-perfect core, pointedly that it is a refinement of the set of subgame-perfect 
cores corresponding to the terminal nodes at which the total payoff of the grand coalition is high-
est. However, this refinement, like many others in game theory, though intuitive, reveals that the 
concept of subgame-perfect core is “strong” in the sense that the subgame-perfect core of an 
extensive game is non-empty only if the subgame-perfect core corresponding to each terminal 
node with highest total payoff for the grand coalition is non-empty.

Since we regard the subgame-perfect core as a rule for the distribution of gains from coali-
tional choices, it makes sense to assume that the grand coalition will not choose a strategy that 
leads to a terminal node for which the corresponding subgame-perfect core is empty. Thus, we 
can define a weaker concept of a subgame-perfect core of an extensive game as the intersection 
of only those subgame-perfect cores corresponding to terminal nodes with highest total payoff 
for the grand coalition that are non-empty. However, in most applications there is no difference 
between the subgame-perfect core and the so-defined weaker notion of the subgame-perfect core 
because either the set of terminal nodes Z∗ with the highest payoff for the grand coalition is a sin-
gleton or the subgame-perfect core corresponding to every terminal node z∗ ∈ Z∗ is non-empty. 
Moreover, the so-defined weaker subgame-perfect core has the same properties as the subgame-
perfect core except that it is less likely to be empty. In essence, the weaker subgame-perfect core 
is the subgame-perfect core of a modified extensive game in which the payoffs of the players 
at all terminal nodes in the set Z∗ for which the corresponding subgame-perfect core is empty 
have been reduced by arbitrary small amounts. Importantly, the weaker subgame-perfect core is 
not an alternative, but a complementary concept that differs from the subgame-perfect core and 
can be a useful concept if the subgame-perfect core is empty. Our analysis so far would remain 
unchanged if we were to switch to the weaker subgame-perfect core instead.

5. Other concepts of cooperation in extensive games

Aumann (1959) introduces a concept of strong Nash equilibrium for a strategic game which 
allows coalitional deviations. Similarly, Bernheim et al. (1987) introduce a concept of a coalition-
proof Nash equilibrium for games in both strategic and extensive forms. Using our approach 
regarding how coalitions may interact in an extensive game, we now introduce a concept of 
subgame-perfect strong Nash equilibrium (SPSNE) for an extensive game and then study how 
the SPSNE and the subgame-perfect coalition-proof Nash equilibrium (SPCPNE) à la Bernheim 
et al. (1987) are related to the subgame-perfect core.

5.1. The subgame-perfect strong Nash equilibrium

As we are familiar with the definition of a SPCPNE in terms of players’ strategies, it is con-
venient to define a SPSNE of an extensive game also in terms of players’ strategies. Moreover, 
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unlike the subgame-perfect core, SPSNE and SPCPNE are strategy profiles rather than pay-
off vectors. Thus, both SPSNE and SPCPNE are to be defined in the space of strategies rather 
than payoff vectors. Let Ti denote the strategy set of player i in an extensive game.20 Then, 
T = T1 × · · · × Tn is the set of strategy profiles, t = (t1, . . . , tn) ∈ T is a strategy profile, and 
u1 = (t1, . . . , tn) is the payoff function of player i.21

Definition 2. Given an extensive game �, a strategy profile t̄ = (t̄1, . . . , ̄tn) ∈ T is a SPSNE of �, 
if t is a SPNE of each induced game �S, S ⊂ N .

Requiring the same strategy profile t̄ to be a SPNE in each induced game �S, S ⊂ N , is the 
key to the definition of a SPSNE, as the same strategy profile may not generally be a SPNE in 
every induced game. For example, in the centipede game in Fig. 1, the strategy profile (s1, s2c1) 
is a SPNE in both induced games �{1} and �{2} but not in the induced game �{1,2}. In contrast, 
the strategy profile (c1, c2c1) is a SPNE in all three (modified) induced games �∗{1}, �∗{2}, and 
�∗{1,2} of the strategic transform �∗, which is identical to the centipede game in Fig. 1 except that 
the payoffs at terminal node z3 are (1, 3) instead of (2, 2). Thus, the strategy profile (c1, c2c1) is 
a SPSNE of game �∗ but not of game �.

We first note some basic conceptual similarities between the strong Nash equilibrium of a 
strategic game and the SPSNE of an extensive game. In strategic games, a strong Nash equi-
librium of a game is also a Nash equilibrium of the game. (i) Similarly, in extensive games, a 
SPSNE of an extensive game is also a SPNE of the extensive game, because a SPSNE of an 
extensive game �, by definition, is a SPNE in every induced game including any induced game 
�{i} = �, i ∈ N . (ii) If an extensive game is a single-stage (imperfect information) game and 
equivalent to a strategic game, a SPSNE of the extensive game reduces to a strong Nash equilib-
rium of the strategic game. In strategic games, a strong Nash equilibrium of a strategic game is 
efficient. (iii) In extensive games, a SPSNE is efficient, because a SPSNE of an extensive game 
�, by definition, is a SPNE of the induced game �N and, therefore, the SPSNE maximizes the 
total payoff of the grand coalition N .

A SPSNE satisfies subgame-perfection in the sense that the restriction of a SPSNE of an 
extensive game to any subgame is a SPSNE of the subgame. This is because a SPSNE of an ex-
tensive game �, by definition, is a SPNE of every induced game �S and, therefore, its restriction 
to any subgame �S

x , where S is an active coalition in the subgame �x , is a SPNE in �S
x . Thus, the 

restriction of a SPSNE to any subgame �x is a SPSNE of �x .
If a two-player extensive game � admits an SPNE, say t , and t is efficient, i.e. there exists no 

strategy profile t ∈ T such that 
∑

i∈N ui(t) >
∑

i∈N ui(t), then t is a SPNE of all three induced 
games �{1}, �{2}, and �{1,2} and, therefore, the SPNE is actually a SPSNE. Thus, the unique 
SPNE in Rubinstein game is actually a SPSNE.

Proposition 5. Let � be a perfect information extensive game such that each induced game 
�S, S ⊂ N , admits a unique SPNE. Then, if � admits a SPSNE, the SPSNE is unique and the 

20 For perfect information games, a strategy of player i is a function that assigns an action to each decision node of 
player i. For imperfect information games, it is a function that assigns an action to each information set of player i. See 
Osborne and Rubinstein (1994: pp. 94 and 203) for a formal definition of a player’s strategy in an extensive game.
21 In terms of earlier notation ui (t1, . . . , tn) ≡ ui(z), where z is the terminal node of the history generated by the strategy 
profile (t1, . . . , tn).



18 P. Chander, M. Wooders / Journal of Economic Theory 187 (2020) 105017
subgame-perfect core consists of the unique SPSNE payoff vector. But if � admits no SPSNE, the 
subgame-perfect core of � may still be non-empty.

The proof of Proposition 5 is in the Appendix. Since, as was noted above, a finite extensive 
game of perfect information admits a non-empty subgame-perfect core if and only if its coali-
tional game representation is balanced, Proposition 5 implies that in a general class of extensive 
games the subgame-perfect core is a weaker concept than the SPSNE in the sense that the nec-
essary and sufficient condition for the existence of a non-empty subgame-perfect core is not 
generally sufficient for the existence of a SPSNE. For example, the centipede game in Fig. 3
admits a non-empty subgame-perfect core, but has no SPSNE.

The proof of Proposition 5 also illustrates the point made above that the worth functions 
wγ (S) and wγ (S; x), x ∈ X∗, S active at x, may be closely related, and may even be equal for 
some x ∈ X∗, if the extensive game has additional structure.

Proposition 6. If a two-player extensive game of perfect information admits a unique SPNE and 
the SPNE is efficient, the subgame-perfect core is non-empty and consists of the unique SPNE 
payoff vector.

The proof of Proposition 6 is in the Appendix.

5.2. The subgame-perfect strong and the coalition-proof Nash equilibria

We now establish an additional conceptual similarity between the strong Nash equilibrium of a 
strategic game and a SPSNE of an extensive game. As is well-known, a strong Nash equilibrium 
of a strategic game is also a coalition-proof Nash equilibrium. Therefore, for the concept of 
SPSNE introduced above to qualify as a convincing extension of the strong Nash equilibrium 
concept for strategic games to extensive games, it needs to be shown that a SPSNE of an extensive 
game is indeed a SPCPNE of the extensive game.

We recall the definition of a SPCPNE of an extensive game as in Bernheim et al. (1987); 
for which we need some additional notation. Given a strategy profile t = (t1, . . . , tn) ∈ T and a 
subset S ⊂ N , let tS ≡ (ti)i∈S, t−S ≡ (tj )j∈N\S , and (tS, t−S) ≡ t . Let TS ≡ ×i∈STi . Then, the 
strategy set of coalition S in the induced game �S is TS and the strategy set of each player j in 
N\S is Tj . Let �/t−S denote the extensive game induced on subgroup S in which the strategy 
of each player j ∈ N\S has been fixed at tj ∈ Tj , the number of players in �/t−S is equal to the 
cardinality of S, the strategy set of a player i ∈ S is Ti , and the payoff function of each player 
i ∈ S is ui = ui(tS, t−S), where tS ∈ TS is a strategy profile of the players in S. By definition of 
a restricted game �/t−S , two straightforward implications are that if t = (tS, t−S) is a SPNE (or 
SPSNE) of �, then for each S ⊂ N, tS is a SPNE (or SPSNE resp.) of the restricted game �/t−S . 
Finally, we define the number of stages of an extensive game as the maximum number of nested 
proper subgames.

Definition 3. (1) In a single-player, single-stage extensive game �, t ∈ T is a SPCPNE if and 
only if t is a SPNE of �.

(2) Let (n, m) ≥ (1, 1). Assume that SPCPNE has been defined for all extensive games with 
fewer than n players and m or fewer stages:
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(a) For any game � with n players and m stages, a strategy profile t ∈ T is perfectly self-
enforcing if, for every proper subset S ⊂ {1, . . . , n}, tS is a SPCPNE of the game �/t−S , and if 
the restriction of t to any proper subgame is a SPCPNE of the subgame.

(b) For an extensive game � with n players and m stages, t ∈ T is a SPCPNE if it is perfectly 
self-enforcing and if there does not exist another perfectly self-enforcing strategy profile t ∈ T

such that 
∑

i∈N ui(t) >
∑

i∈N ui(t).

Proposition 7. Every SPSNE of a perfect-information extensive game � with m stages is a 
SPCPNE of �, but the converse is not true.

The proof of Proposition 7 is in the Appendix.

6. Additional applications

For the sake of a simple and transparent exposition of our solution concept for extensive 
games, we have restricted ourselves to finite and perfect information games. However, as already 
noted in section 3.1, the concept of subgame-perfect core is of wider applicability. Here we 
briefly discuss an application of the subgame-perfect core to a specific n-player dynamic game 
that is neither finite nor a perfect information game. More specifically, Chander (2017) formulates 
climate change as a dynamic game and shows that the subgame-perfect core of the dynamic 
game is non-empty. Non-emptiness of the subgame-perfect core means that climate change can 
be tackled by cooperation, as a cooperative agreement to tackle climate change has indeed been 
negotiated and signed by close to 200 countries. An empty subgame-perfect core would have 
implied that no stable cooperation to tackle climate change was possible and the status quo, 
which is best described by a SPNE of the dynamic game of climate change, cannot be improved 
upon, unless the countries were willing to agree to some fairness criteria such as the one implicit 
in the Shapley value.

As Chander (2017) notes, the dynamic game of climate change is similar to the dynamic game 
with a public good in Marx and Matthews (2000), and the subgame-perfect core of the dynamic 
game of climate change is comparable to the efficient Bayesian equilibria sustained by trigger 
strategies of the dynamic game with a public good. The dynamic game of climate change is also 
related to the dynamic game in Harstad (2012), who, unlike our approach, assumes that countries 
can write contracts that commit them to a profile of strategies of the dynamic game.

7. Concluding remarks

This paper brings together two of the most important solution concepts in game theory: the 
subgame-perfect Nash equilibrium of an extensive game and the core of a coalitional game. A 
link between the two has been apparently missing in the literature. Thus, the paper opens the 
door for further applications of concepts and solutions for coalitional games to extensive form 
games.

Our approach to define coalitional payoffs and subgame-perfect cooperation can be extended 
to the case in which if a coalition deviates, the remaining players are assumed to form one or 
more non-singleton coalitions. Papers taking this approach include Ray and Vohra (1997) and 
Maskin (2003). Ray and Vohra address the question of the properties that might be expected of 
binding agreements. Because these authors address strategic rather than extensive games, sub-
game perfection plays no role in their framework. Maskin (2003) proposes a core concept for 
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partition function games in which if a coalition deviates, the remaining players form a coalition 
of their own. Our approach can be used to extend the basic idea underlying Maskin’s core to an 
extensive game. More specifically, the induced games will now have only two players: if S is the 
set of all active players at a decision node x, then for each S′ ⊂ S, the player set of the induced 
subgame �S

x consists of {S′, S\S′}. As in the case of subgame-perfect core, the highest SPNE 
payoff of this induced subgame is the highest payoff that coalition S′ can obtain in the induced 
game.22 Defined thusly, the properties of Maskin’s core for an extensive game with perfect infor-
mation can be explored further. However, it is clear from the definition itself that Maskin’s core 
payoff vectors, unlike the subgame-perfect core payoff vectors, cannot be related to subgame-
perfect strong and coalition-proof Nash equilibria and are not in general Pareto improvements 
over the status quo that is best described by an SPNE.

Our analysis shows that extensive form games can be divided into three broad categories: (a) 
those in which the subgame-perfect core is empty, (b) those in which the subgame-perfect core is 
non-empty, but no subgame-perfect core payoff vector is a SPNE payoff vector, and (c) those in 
which the subgame-perfect core is non-empty and a subgame-perfect core payoff vector is also a 
SPNE payoff vector. In category (a) games, no stable cooperation is possible and no SPNE can be 
Pareto improved upon by cooperation. In category (b) games, cooperation is possible and a SPNE 
can be Pareto improved upon by cooperation, but there could be a conflict between individual 
and group incentives. In category (c) games, not only cooperation is possible, but also there is no 
conflict between individual and group incentives and every subgame-perfect core payoff vector 
is also a SPNE payoff vector. It was also shown that every category (b) game can be transformed 
into a category (c) game by suitably changing the distribution of payoffs at a terminal node with 
highest payoff for the grand coalition.

Finally, every finite and perfect information extensive game, as shown, has a coalitional game 
form and, therefore, a Shapley value. Thus, every finite and perfect information extensive game 
has a solution that is efficient and fair in the sense of Shapley (1953). It would be interesting to 
do separate experiments on all three categories of centipede games and compare their Shapley 
values with the outcomes obtained in the experiments and the degree of cooperation observed in 
extensive games in each category.

We showed that every subgame-perfect core payoff vector can be implemented as a non-
cooperative solution of an extensive form game that is closely related to the original extensive 
form game. In other words, we showed how incentives can be designed such that the players 
will choose those actions that maximize social welfare. The subgame-perfect core payoff vectors 
can also be interpreted as state dependent contracts that are binding if an only if a pre-specified 
state (i.e. a terminal node) occurs. This type of contracts may be necessary in environments in 
which actions of the players cannot be observed, but the state that may occur can be observed 
and verified.

Our approach can be used to derive a partition function from an extensive game: For each 
partition of the total player set, consider the induced game in which each coalition in the partition 
becomes a single player. Then, the worth of a coalition in a partition is equal to its highest SPNE 
payoff in any subgame induced by the partition.

22 The α- or β-core of an extensive game can be defined similarly by assuming that in each induced subgame the 
complementary coalition of a deviating coalition of active players chooses strategies that max-min or min-max the payoff 
of the deviating coalition. However, the max-min or min-max strategies may not be SPNE strategies and, thus, not 
credible.
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Our approach differs from that in Chander (2007; 2018a) and others in that we consider exten-
sive form games and subgame perfection. Our approach rests on two fundamental ideas discussed 
in the introduction: Coalitions become players and, at the origin of any subgame, only those play-
ers who still have decisions to make can become part of a coalition. Possibilities for coalitional 
actions are considered through the equilibrium notion – the subgame-perfect Nash equilibrium.

Appendix A

Proof of Proposition 1. We prove the proposition for the case in which the terminal node with 
the highest payoff for the grand coalition is unique and then note that the proof also holds for the 
case when it is not. Let z∗ denote the terminal node of � with highest total payoff for the grand 
coalition and let (x∗

1 , . . . , x∗
K ) denote the decision nodes – in descending order – along the history 

leading to the terminal node z∗. Thus, x∗
1 is the origin of �, x∗

2 is the immediate successor of x∗
1 , 

and x∗
K is the immediate predecessor of z∗. Let a∗

k denote the actual action taken at decision node 
x∗
k and i∗k be the player required (by the grand coalition) to move and take action a∗

k at decision 
node x∗

k , k = 1, . . . , K .
Given a subgame-perfect core payoff vector (p∗

1, . . . , p∗
n) let �∗ denote the strategic-transform 

of � obtained by replacing the payoffs at the terminal node z∗ with a subgame-perfect core payoff 
vector (p∗

1, . . . , p∗
n) By definition, 

∑n
i=1 p∗

i = ∑n
i=1 ui(z

∗).
We prove by backward induction that (p∗

1, . . . , p∗
n) is a SPNE payoff vector in the strategic-

transform �∗. We start with subgames �∗
x∗
K

and �x∗
K

. Since (p∗
1, . . . , p∗

n) is a subgame perfect 

core payoff vector and x∗
K is a node along the history leading to the terminal node z∗, it follows, 

by definition of a subgame perfect core payoff vector, that p∗
i∗K

≥ ui∗K (z) at all terminal nodes 
z of the subgame �x∗

K
. Because players’ payoffs at all but one terminal node of the subgame 

�∗
x∗
K

are the same as in the subgame �x∗
K

and are different and equal to (p∗
1, . . . , p∗

n) only at 

the terminal node z∗ with p∗
i∗K

≥ ui∗K (z) at all terminal nodes z of �x∗
K

, action a∗
K is optimal for 

player i∗K also in �∗
x∗
K

and players’ SPNE payoffs in �∗
x∗
K

are equal to (p∗
1, . . . , p∗

n). Consider next 

the subgame �∗
x∗
K−1

and its subgames �∗
x . Then each subgame �∗

x is identical to subgame �x if 

x �= x∗
K is an immediate successor of x∗

K−1. Thus, the SPNE and players’ SPNE payoffs in these 
subgames are equal. The reduced forms of subgames �∗

x∗
K−1

and �x∗
K−1

obtained by applying 

backward induction to each subgame �∗
x /�x where x �= x∗

K is an immediate successor of x∗
K−1, 

are single-player decision problems of player i∗K−1. Since x∗
K−1 is a decision node of player 

i∗K−1, by definition of a SPNE of �x∗
K−1

, we have wγ ({i∗K−1}, x∗
K−1) ≥ ui∗K−1

(z) at all terminal 
nodes of the reduced form of the subgame �x∗

K−1
. Since (p∗

1, . . . , p∗
n) is a subgame-perfect core 

payoff vector and x∗
K−1 is a node along the history leading to the terminal node z∗, it follows, by 

definition of a subgame perfect core payoff vector, that p∗
i∗K−1

≥ wγ ({i∗K−1}, x∗
K−1) ≥ ui∗K−1

(z) at 

all terminal nodes z of the reduced form of the subgame �x∗
K−1

Since players’ payoffs at all but 
one terminal node of the reduced form of �∗

x∗
K−1

are the same as in the reduced form of �x∗
K−1

and are different and equal to (p∗
1, . . . , p∗

n) only at one of the terminal nodes of the reduced 
form of �∗

x∗
K−1

, it follows that p∗
i∗K−1

≥ ui∗K−1
(z) at all terminal nodes z of the reduced form of 

the subgame �∗
x∗
K−1

. Therefore, a∗
i∗K−1

is an optimal action of player i∗K−1 in the reduced form of 

�∗
x∗
K−1

and players’ SPNE payoffs in �∗
x∗
K−1

are equal to (p∗
1, . . . , p∗

n).

By continued application of backward induction, we eventually obtain a SPNE of the subgame 
�∗∗ with SPNE payoffs equal to (p∗, . . . , p∗

n). Similarly, by backward induction, we solve each 

x2 1
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subgame �∗
x /�x where x �= x∗

2 is an immediate successor of x∗
1 ; and obtain a reduced form of the 

strategic transform �∗ that is single-player decision problem of i∗1 . In this reduced form of �∗, 
the payoffs of the players at one of the terminal nodes are equal to (p∗

1, . . . , p∗
n) and at all other 

terminal nodes they are the same as their SPNE payoffs in the subgames �∗
x /�x where x �= x∗

2 is 
an immediate successor of x∗

1 . Since x∗
2 is a decision node along the history leading the terminal 

node z∗, we have, as above, p∗
i∗2

≥ wγ ({i∗2 }, x∗
2 ) ≥ ui∗2 (z) at all terminal nodes z of the reduced 

form of the subgame �∗
x∗

2
. Therefore, a∗

i∗1
is an optimal action of player i∗1 in the reduced form of 

�∗ and players’ SPNE payoffs in �∗ are equal to (p∗
1, . . . , p∗

n).
Finally, if the terminal node with highest payoff for the grand coalition is not unique, we 

can modify the original game by replacing players’ payoffs at every terminal node with highest 
payoff for the grand coalition with a subgame-perfect core payoff vector. By applying backward 
induction in the same way as in the above part of the proof, it is seen that the subgame-perfect 
core payoff vector is a SPNE payoff vector in the modified game. �
Proof of Proposition 2. Let (p1, . . . , pn) be a payoff vector that belongs to the core of the 
characteristic function game wγ . Then, 

∑
i∈N pi = wγ (N) and 

∑
i∈S pi ≥ wγ (S), S ⊂ N . By 

definition of the characteristic function wγ for each S ⊂ N, wγ (S) ≥ wγ (S; x) at each decision 
node x ∈ X∗ at which S is active and wγ (N) = uN(z∗), for all z∗ ∈ Z∗. The inequalities above 
imply that for each S ⊂ N, 

∑
i∈S pi ≥ wγ (S) ≥ wγ (S; x) at each x ∈ X∗ at which S is active, 

and the equalities above imply that 
∑

i∈N pi = uN(z∗) for all z∗ ∈ Z∗ that is (p1, . . . , pn) is a 
feasible payoff vector for all terminal nodes z∗ with the highest payoff for coalition N . Hence, 
(p1, . . . , pn) meets all conditions for a payoff vector to be in the subgame-perfect core of �.

Conversely, let (p1, . . . , pn) be a payoff vector in the subgame-perfect core of the extensive 
game �, then for each S ⊂ N , wγ (S; x) ≤ ∑

i∈S pi at each decision node x along the history 
generated by any strategy profile for which the payoff vector (p1, . . . , pn) is feasible. Since the 
origin 0 is a decision node of the history generated by any strategy profile and coalition N is 
active at the origin, 

∑
i∈N pi ≥ wγ (N; 0). Furthermore, since (p1, . . . , pn) is a feasible payoff 

vector, 
∑

i∈N pi = wγ (N, 0) = wγ (N). Accordingly, 
∑

i∈N pi = wγ (N) and (p1, . . . , pn) is 
a feasible payoff vector for any history of the game leading to a z∗ ∈ Z∗. Therefore, for each 
S ⊂ N , wγ (S; x) ≤ ∑

i∈S pi at each x ∈ X∗. Thus, 
∑

i∈S pi ≥ wγ (S) for each S ⊂ N and the 
payoff vector (p1, . . . , pn) is in the core of the characteristic function game wγ . This proves 
that the core of the characteristic function game wγ is equal to the subgame-perfect core of the 
extensive game �. �
Proof of Proposition 3. Let (p1, . . . , pn) be a payoff vector in the subgame-perfect core. Then, 
for each coalition S ⊂ N , wγ (S) ≤ ∑

i∈S pi and wγ (S; x) ≤ wγ (S) for all x ∈ X∗ at which 
coalition S is active. Therefore, for each x ∈ X∗, wγ (S; x) ≤ ∑

i∈S pi for all coalitions S which 
are active at x. Furthermore, if �x, x ∈ X∗, is a game with n players, then x is a node in the 
set X∗ at which coalition N is active. Therefore, wγ (N; x) = wγ (N) = ∑

i∈N pi . This proves 
that (p1, . . . , pn) belongs to the core of each subgame with n players in the family �x, x ∈ X∗. 
However, if (p1, . . . , pn) is a payoff vector in the subgame-perfect core, then, by definition, it 
must satisfy the constraints wγ (S; x) ≤ ∑

i∈S pi also at nodes x ∈ X∗ at which not all n players 
are active. Therefore, the set of payoff vectors in the subgame-perfect core may be a strict subset 
of the intersection of the cores of subgames with n players in the family �x, x ∈ X∗ as indeed is 
the case in Example 1.

If all n players are active in all games in the family �x, x ∈ X∗, then coalition N is active in 
each �x, x ∈ X∗ and the set of decision nodes along any history generated by any strategy profile 
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Fig. 4. A game in which all players are active in all subgames.

that maximizes the payoff of coalition N in �x, x ∈ X∗, is a subset of the set X∗. Therefore, 
wγ (N, x) = wγ (N, 0) for all x ∈ X∗. This implies that if (p1, . . . , pn) belongs to the core �x , 
then wγ (N; x) = wγ (N) = ∑

i∈N pi . Furthermore, if (p1, . . . , pn) belongs to the cores of all 
�x, x ∈ X∗, then for each coalition S which is active at x, wγ (S; x) ≤ ∑

i∈S pi for all x ∈ X∗. 
Given that wγ (S) = sup

x
wγ (S; x), this implies that there is no coalition S for which wγ (S) >∑

i∈S pi at some decision node x ∈ X∗. This proves that if all n players are active in all games 
in the family �x, x ∈ X∗ then a payoff vector (p1, . . . , pn) that belongs to the intersection of the 
cores of the games in the family also belongs to the subgame-perfect core. It was shown above 
that if (p1, . . . , pn) belongs to the subgame-perfect core then it also belongs to intersection of all 
games with n active players in the family �x, x ∈ X∗. �

A simple example of a game in which all players are active in all subgames: The two-player 
extensive game � in Fig. 4 below has three subgames: �x1, �x2 , and �x3 . Both players are ac-
tive in all three subgames. The core of subgame �x1consists of payoff vectors (p1, p2) such that 
p1 + p2 = 4, p1 ≥ 1, p2 ≥ 1, because wγ (x1; {1}) = wγ (x1; {2}) = 1 and wγ (x1; {1, 2}) = 4. 
The core of subgame �x2 consists of payoff vectors (p1, p2) such that p1 +p2 = 4, p1 ≥ 0, p2 ≥
3, because wγ (x2; {1}) = 0, wγ (x2; {2}) = 3 and wγ (x2; {1, 2}) = 4. The core of subgame �x3

consists of payoff vectors (p1, p2) such that p1 +p2 = 4, p1 ≥ 1, p2 ≥ 3, because wγ (x3; {1}) =
1, wγ (x3; {2}) = 3 and wγ (x3; {1, 2}) = 4. Thus, the intersection of the cores of the three sub-
games is the set of payoff vectors (p1, p2) such that p1 + p2 = 4, p1 ≥ 1, p2 ≥ 3, and the 
subgame-perfect core of � is exactly equal to the intersection, because wγ ({1}) = 1, wγ ({2}) = 3
and wγ ({1, 2}) = 4.

Proof of Proposition 4. By definition, X∗ = ∪X(z∗) where the union is taken over all z∗ ∈ Z∗. 
Thus, by definitions of the worth functions wγ and wγ

z∗ , we have for each coalition S ⊂
N, wγ (S) = sup

z∗
w

γ
z∗(S) where the supremum is taken over all z∗ ∈ Z∗. Let (p1, . . . , pn) be a 

subgame-perfect core payoff vector of an extensive game �. Then, by Proposition 2, (p1, . . . , pn)

belongs to the core of the coalitional game with worth function wγ . Thus, for each S ⊂ N , 
we have 

∑
i∈S pi ≥ wγ (S) = sup

∗
w

γ
z∗(S) where the supremum is taken over all z∗ ∈ Z∗. This 
z
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implies, for each S ⊂ N , we have 
∑

i∈S pi ≥ w
γ
z∗(S) for each z∗ ∈ Z∗. Thus, (p1, . . . , pn) be-

longs to the core of every coalitional game with worth function wγ
z∗ , z∗ ∈ Z∗. Conversely, let 

(p1, . . . , pn) be a core payoff vector for every coalition game wγ
z∗, z∗ ∈ Z∗. Then, for each 

S ⊂ N , we have 
∑

i∈S pi ≥ w
γ
z∗(S) for every z∗ ∈ Z∗. This means, for each S ⊂ N , we have ∑

i∈S pi ≥ sup
z∗

w
γ
z∗(S) = wγ (S). In view of Proposition 2, this implies that (p1, . . . , pn) is a 

subgame-perfect core payoff vector of �. Thus, the subgame perfect core of an extensive game 
is equal to the intersection of the subgame-perfect cores corresponding to the terminal nodes in 
the set Z∗. �
Proof of Proposition 5. We first claim that if the extensive game � admits a SPSNE, then it 
must be unique. Because, if not, then at least one induced games �S admits more than one SPNE 
(because a SPSNE, by definition, is a SPNE of each induced game �S) which contradicts our 
supposition that each induced game �S admits a unique SPNE. Let t ∈ T denote the unique 
SPSNE.

As hypothesized, �N admits a unique SPNE. Thus, the terminal node with highest payoff for 
coalition N is unique. Since each induced game, by hypothesis, admits a unique SPNE and t
is the unique SPSNE, t is the unique SPNE of every induced game �S, S ⊂ N . Therefore, the 
history generated by the unique SPNE t of each induced game �S, S ⊂ N is identical to the 
history leading to the unique terminal node with highest payoff for coalition N . Let X∗ denote 
the set of nodes along the history leading to the unique terminal node with highest payoff for 
N . Then, o ∈ X∗ and for each x ∈ X∗, wγ (S; x) = wγ (S; o) = ∑

i∈S ui(t), S ⊂ N , because X∗
is the set of nodes along the history generated by the unique SPNE t of each �S, S ⊂ N , and, 
therefore, the restriction of t to each induced subgame �S

x , x ∈ X∗ is a unique SPNE of the 
subgame. Thus, wγ (S) = wγ (S; o), S ⊂ N , and if (p1, . . . , pn) belongs to the subgame-perfect 
core, then it must satisfy 

∑
i∈N pi = wγ (N) = ∑

i∈N ui(t) and 
∑

i∈S pi ≥ wγ (S) = ∑
i∈S ui(t). 

Hence, the unique SPSNE payoff vector (ui(t), . . . , un(t)) is the unique subgame-perfect core 
payoff vector. This proves the first part of the proposition.

For the second part of the proposition, note that the centipede game in Fig. 3 is a game in 
which each induced game admits a unique SPNE. But the game admits no SPSNE because there 
is no SPNE that is a SPNE in every induced game. In particular, the unique SPNE of the centipede 
game � in Fig. 3 is not a SPNE of the induced game �{1,2}. However, as noted above, the game 
admits a non-empty subgame-perfect core. �
Proof of Proposition 6. The unique SPNE of � is also a unique SPNE in both the induced games 
�{1} and �{2}, because �{1} = �{2} = �. Furthermore, since the unique SPNE is efficient, it is also 
a SPNE of the induced game �{1,2}. Therefore, by definition of SPSNE, the unique SPNE of �
is a SPSNE of �. By Proposition 5, the SPSNE is unique and the subgame-perfect core is non-
empty and consists of the unique SPSNE/SPNE payoff vector. �
Proof of Proposition 7. The proof is by induction on the number of players and stages. The 
proposition is true for games with a single player and m or fewer stages. Suppose the proposition 
is true for games with k or fewer players, i.e. 1 ≤ k < n, and h ≤ m stages. We show that then it 
is also true for games with k + 1 players and h ≤ m stages, i.e. a SPSNE of any extensive game 
with k + 1 players and h ≤ m stages is a SPCPNE of the game.

Suppose t ∈ T is a SPSNE of a single-stage game � with k+1 players, then, by definition of a 
SPSNE, t = (tS, t−S) is a SPNE of each induced game �S , S ⊂ {1, . . . , k+1} and, therefore, tS is 
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a SPNE of each induced game in the restricted game �/t−S. Thus, tS is a SPSNE of the restricted 
game �/t−S for each proper subset S of players. Since, as hypothesized, the proposition is true 
for games with k or fewer players and m or fewer stages and tS is a SPSNE of �/t−S for each
proper subset S ⊂ {1, . . . , k + 1}, the strategy tS is a SPCPNE of �/t−S for each proper subset 
S ⊂ {1, . . . , k + 1}. Therefore, t is perfectly self-enforcing in the single-stage game � with k + 1
players. Furthermore, by hypothesis, t is a SPSNE of � and, therefore, a SPNE of the (single 
player) induced game �N , i.e. there is no t ∈ T such that 

∑k+1
i=1 ui(t) >

∑k+1
i=1 ui(t). Therefore, 

by part (2) of Definition 3, t ∈ T is a SPCPNE of the single-stage game � with k + 1 players. 
Similarly, if � is a two-stage game with k + 1 players and t is a SPSNE of �, the strategy tS
is a SPCPNE of �/t−S for each proper subset S ⊂ {1, . . . , k + 1}, and restriction of t to any 
subgame of � is a SPCPNE of the subgame, because any subgame of a two-stage game � is a 
single-stage game and has at most k + 1 players and, therefore, as already shown a SPCPNE 
of any subgame of � with k + 1 or fewer players. Furthermore, there is no t ∈ T such that ∑k+1

i=1 ui(t) >
∑k+1

i=1 ui(t), because t is a SPSNE of �. Proceeding in this way, the proposition 
is true for any game with k + 1 players and m or fewer stages, if it is true for any game with k
players and m or fewer stages.

Lastly, the converse is not true, because the unique SPNE in the centipede game in Fig. 3 is a 
SPCPNE, but not a SPSNE, as the unique SPNE of this game is not a SPNE of the induced game 
�N . �
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